A new standard for endocrine disruptor testing in fish -

The integrated Fish Endocrine Disruptor Test (iFEDT)

Team Odense:

Henrik Holbech,
Jane Morthorst

Team Heidelberg:

Lisa Baumann*, Pauline Pannetier Lisa Goelz, Teresa Fagundes, Thomas Braunbeck

Team Antwerp:

Dries Knapen, Lucia Vergauwen, Evelyn Stinckens

^{*}Presenting author: lisa.baumann@uni-heidelberg.de

Funding by:

EU tender project No. 07.0203/2018/794670/ETU/ENV.B.2 "Development of a study protocol for regulatory testing to identify endocrine disrupting substances in biotic systems"

Steering Group: Scientific Expert Group:

Mara Ceridono Gerald Ankley
Aude Kienzler Zhichao Dang
Sharon Munn John Green

Laia Quiros Tom Hutchinson

Maristella Rubbiani Marc Leonard

Georg Streck Peter Matthiessen
Jordane Wodli Helmut Segner

Charles Tyler

Scientific Advisors:

Maria Arena

Francesca Pellizzato

Current challenges in endocrine disruptor testing with aquatic species

- Test guidelines for assessment of endocrine adversity are complex and long (= expensive and using many animals)
- Only few test cover all relevant life stages and include populationrelevant, apical endpoints
- Distinction from general toxicity is not possible in all tests
- Major gaps and weaknesses exist regarding the different EATS*
 modalities → EAS in fish, T in amphibians → need to run multiple
 tests to cover all
- → DG ENV call for tender (2018)

Design of existing OECD test guidelines with fish

mpf: months post fertilization dpf: days post fertilization

Proposal for a new/merged test protocol

21 days + 63 days = **84 days**

→ OECD TG 240 "MEOGRT": **133 days!**

mpf: months post fertilization dpf: days post fertilization

Gaps in fish OECD test guidelines 229, 230 & 234

Test guideline		OECD TG 229 ^(c)	OECD TG 230	OECD TG 234
Test duration		21 days	21 days	60 days post- hatch
Life stages		Sexually mature male and spawning female (F0)	Sexually mature male and spawning female (F0)	From newly fertilised egg until completion of sexual differentiation (F0)
Species		Fathead minnow, Japanese medaka, zebrafish	Fathead minnow, Japanese medaka, zebrafish	Japanese medaka, three- spined stickleback, zebrafish, fathead minnow (partially validated)
Parameter name	Indicative of: ^(a)			
VTG in females	E, A, S	X	Χ	X
VTG in males	E, A, S	X	Χ	Χ
Spiggin	Α			
Male SSC in females	А	Х	Х	$X_{(a)}$
Male SSC in males	E, A, S	Х	Х	$X_{(d)}$
Specific gonad histopathology ^(b)	E, A, S	X (optional)		X (optional)
Sex ratio (female biased)	E, A			Х
Sex ratio (male biased)	E, A, S			Х

Test guideline		OECD TG 229 ^(c)	OECD TG 230	OECD TG 234
Transcriptional activity of cyp19a1b	Е			
Behaviour	N	X	X	X
Length	N			X
Morphological abnormalities	N	X	X	X
Gonadosomatic index	N			
Embryo time to hatch	N			
Reproduction (fecundity, fertility)	N	X		
Survival	N	X	Х	X
Larval survival and length	N			X
Survival of embryos	N			X
Time to maturity (time to first spawn)	N			
Hatching success	N			X
Histopathology (liver, kidney)	N			
Body weight	N			X

Orange: in vivo mechanistic

Blue: EATS-mediated

Purple: sensitive to, but not diagnostic of EATS

ECHA/EFSA guidance document 2018

Importance of the thyroid hormone system in fish

Thyroid hormones regulate "everything"

Developmental processes:

- Fins
- Pigmentation
- Craniofacial structures
- Swimbladder
- Neurodevelopment, sensory organs (eyes, ears, lateral line, olfactory epithelium)

Physiological processes:

- Energy metabolism
- Growth
- Stress response
- Immune system
- Very little is known about adverse outcomes of environmental exposure of fish to thyroid hormone axis disruptors

Potential thyroid-related endpoints in fish

+ Thyroid hormone levels and gene expression in target systems

Proposal for the design of a new test protocol

Strategy of EU Tender project « iFEDT »:

Hypotheses:

- 1. It is possible to merge the existing test guidelines 229 and 234 without major changes to the protocols
- 2. New endpoints in fish can be established in order to assess thyroid-related effects without using amphibians

Approach:

- 1. Run iFEDT experiment with a model thyroid hormone axis disruptor: **Propythiouracil (PTU)**
- 2. Run iFEDT experiment with a model estrogen disruptor: **Ethinylestradiol (EE2)**

Results: PTU experiment

Adults (21 days of exposure according to TG 229)

Reproduction

PTU exposure caused impaired reproduction in adult fish

- A reduced cumulative number of eggs per female was found at the highest PTU concentration
 → No effect on hatch and survival of offspring
- No effect on adult survival
- No effect on adult weight and length

Cumulative number of eggs/female/day in adult zebrafish (*Danio rerio*) after 21-day exposure to different PTU concentrations (0 to 78.1 mg/L).

Adults (21 days of exposure according to TG 229)

Vitellogenin (VTG) levels

 PTU exposure had no effect on vitellogenin levels of adult fish

VTG levels of female and male adult zebrafish after 21-day exposure to different PTU concentrations (0 to 78.1 mg/L) (N=4; n=4-6 per replicate, n=14-22 per concentration)

Adults (21 days of exposure according to TG 229)

Histology – Thyroid

- PTU exposure caused a significant increase in thyroid follicle epithelium thickness in adult fish
- PTU exposure induced a slight increase in size and number of thyroid follicles
- No histopathological effects in gonads, livers and eyes

Control 78.125 mg/L PTU

Thyroid follicles of control vs. PTU-exposed zebrafish with proliferated epithelium

Thyroid follicle size and epithelium thickness of PTU-exposed zebrafish (***: p<0.001; n=3-13)

Results: Larvae

F1 generation (25 days of exposure according to TG 234): Larvae Histology – Thyroid

 PTU exposure caused a significant increase in thyroid follicle epithelium thickness in larvae

PTU concentration (mg/L)

Thyroid follicle size and epithelium thickness of PTU-exposed fish (*: p<0.05; n=5-9)

Control

78.125 mg/L

F1 generation (25 days of exposure according to TG 234): Larvae

Histology – Retinal pigment epithelium (RPE) layer of the eyes

• PTU exposure caused a **significant increase** in RPE thickness in the eyes of larvae

RPE thickness of PTU-exposed fish (****: p<0.0001; n=5-8)

Results: Juveniles

F1 generation (60 days of exposure according to TG 234): Juveniles Morphological changes

• PTU exposure led to impaired growth of offspring

Length and weight of juvenile fish (**: p<0.001, n= 64-100)

F1 generation (60 days of exposure according to TG 234): Juveniles

Morphological changes

• PTU exposure led to formation of a goiter (proliferated thyroid follicles) in juvenile

Development of goiter in the F1 generation of zebrafish exposed to 78.125 mg/L PTU for 60 days

F1 generation (60 days of exposure according to TG 234): Juveniles

Histology – Thyroid

• Number of thyroid follicles per fish:

• 0 mg/L: 5-15

• 12.5 mg/L: 15-30

• 31.25 mg/L: 15-30

• 78.125 mg/L: **15 to >60**

Increase of epithelium thickness

Strong changes in colloid structure

Control

78.125 mg/L PTU

Thyroid follicle size and epithelium thickness of PTU-exposed fish (****: p<0.0001)

F1 generation (60 days of exposure according to TG 234): Juveniles

Histology – Eyes

- PTU exposure induced a significant increase of eye diameter/body length ratio in juveniles
- The thickness and pigmentation of the retinal pigment epithelium (RPE) was slightly decreased

Retina of control vs. PTU-exposed zebrafish with altered cellular structure

PTU concentration (mg/L)

Ratio eye diameter/body length and retinal pigment epithelium (RPE) thickness of juvenile zebrafish exposed to PTU (n= 11-57)

Summary PTU « iFEDT » experiment

		Adults	Embryos	Larvae	Juveniles
Reproduction		Я	ND	ND	ND
Survival rates		-	-	-	-
Weight		-	ND	ND	ν
			7 at 12.5 and		
Length		-	78.125mg/L	-	ν
Eyes	eyes/body ratio	-	-	-	7
	RPE	-	-	7	-
	number	7	ND	7	7
Thyroid	size	-	ND	-	7
follicles	epithelium	7	ND	7	7
	thickness	/'	ND	/'	71
VTG		-	ND	ND	ND
Thyroid hormone		ND	ND	ND	ND
Sex ratio		-	ND	ND	
Gonad ma	aturity	ND	ND	ND	-
Other comments			No effect on RPE but		Change in behavior
			effect on some other		Eye malformations
			layers (INL and		Goiter formation
			Photoreceptors)		Change in colloid structure

∠ Increase

∠ Decrease

ND = No data

- = No effect

Conclusions and outlook

- Not yet fully analyzed: hormone levels, swimbladder, low concentrations
- Preliminary results provide good evidence that merging of 2 existing TGs is possible
- Preliminary results provide good evidence that T-modality can be assessed in fish
- Thyroid histopathology seems to be the most sensitive endpoint (until now)
- Differences between life stages need to be considered when analyzing the eyes
- Experiment with Ethinylestradiol is ongoing
- Project was extended to end of 2021 due to delays caused by Covid-19 pandemic

Acknowledgements

Research teams in Antwerp, Odense and Heidelberg!

Funding by:

EU tender project No. 07.0203/2018/794670/ETU/ENV.B.2 "Development of a study protocol for regulatory testing to identify endocrine disrupting substances in biotic systems"

Steering Group: Scientific Expert Group:

Mara Ceridono Gerald Ankley Aude Kienzler Zhichao Dang Sharon Munn John Green

Laia Quiros Tom Hutchinson

Maristella Rubbiani Marc Leonard

Georg Streck Peter Matthiessen
Jordane Wodli Helmut Segner
Charles Tyler

Scientific advisors:

Maria Arena

Francesca Pellizzato

Thank you very much for your attention!!

